AmZ8136 Eight-Bit Decoder With Control Storage

DISTINCTIVE CHARACTERISTICS

- 8-bit decoder/demultiplexer with control storage
- 3-state outputs
- Common clock enable
- Common clear
- Polarity control
- Advanced Low Power Schottky Process
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The AmZ8136 is an eight-bit decoder with control storage. It provides a conventional 8-bit decoder function with two enable inputs which may also be used for data input. This can be used to implement a demultiplexer function. In addition, the "exclusive-OR" gates provide polarity control of the selected output. The 3-state outputs are enabled by an active LOW input on the output enable, \overline{OE} .

The three control bits representing the output selection and the single bit polarity control are stored in "D" type flip-flops. These flip-flops have Clear, Clock, and Clock Enable functions provided. The \overline{G}_1 and G_2 inputs provide either polarity for input control or data.

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

 $COM'L \quad T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0 \vee \pm 5\%$ MIN. = 4.75 V MAX. = 5.25 V $T_A = -55^{\circ}C \text{ to } +125^{\circ}C \text{ V}_{CC} = 5.0 \text{ V} \pm 10\% \text{ MIN.} = 4.50 \text{ V} \text{ MAX.} = 5.50 \text{ V}$ MIL

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Description	ERATING RANGE Test Con	: ditions (Note 1)	Min.	Typ. (Note 2)	Max.	Units	
Val		V _{CC} = MIN.	IOH = -2.6	nA, COM'L	2.4	3.2		Vala	
∙он		VIN = VIH or VIL	IOH = -1.0	nA, MIL	2.4	3.4		Volts	
Vol		V _{CC} = MIN.	I _{OL} = 24 mA	, COM'L		0.4	0.5	Volte	
VOL	Output LOW Voltage	VIN = VIH or VIL	I _{OL} = 12mA	, MIL		0.35	0.4	Volts	
VIH	Input HIGH Level	Guaranteed input log voltage for all inputs	ical HIGH	2.0		-	Volts		
		Guaranteed input log		1	0.7				
VIL		voltage for all inputs			0.8	Volts			
vi	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -	18mA				-1.5	Volts	
կլ	Input LOW Current	V _{CC} = MAX., V _{IN} =	0.4V				-0.4	mA	
ı́н	Input HIGH Current	V _{CC} = MAX., V _{IN} =	2.7 V				20	μΑ	
ų	Input HIGH Current	V _{CC} = MAX., V _{IN} =	7.0V				0.1	mA	
1.0	Off-State (High-Impedance)					-20			
'U	Output Current	VCC - MAX.	V ₀ = 2.4 V			20	μΑ		
ISC	Output Short Circuit Current (Note 3)	V _{CC} = MAX.			-15		-85	mA	
ICC	Power Supply Current (Note 4)	V _{CC} = MAX.			37	56	mA		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. Test Conditions: $A = B = C = \overline{G_1} = G_2 = \overline{OE} = \overline{CE} = GND$; $CLK = \overline{CLR} = POL = 4.5 V$.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	
Temperature (Ambient) Under Bias	–55°C to +125°C
Supply Voltage to Ground Potential Continuous	-0.5V to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max.
DC Input Voltage	
DC Output Current, Into Outputs	30mA
DC Input Current	-30mA to +5.0mA

AmZ8136

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

Parameters		Description	Min.	Тур.	Max.	Units	Test Conditions
tPLH	c to V V			17	25		
tPLH	G1 10 10 - 17	•		23	34	115	
				20	30		
tPHL	$G_2 10 T_0 - T_7$,		26	39		
t _{PLH}				24	36		
tPHL	$CP to t_0 - t_1^2$	7		30	45		$C_L = 45 pF$
tPLH		/		24	36		$R_L = 667\Omega$
tPHL	CLR to $r_0 = r_0$	r ₇		31	46	ns	
ts TT or			25		1		
th	CE to CP		0				
ts			15				
t _h	PHL CLR to $Y_0 - Y_7$ PHL CLR to $Y_0 - Y_7$ s CE to CP h A, B, C, POL to CP HZ OE to $Y_0 - Y_7$ IZ OE to $Y_0 - Y_7$		0				
t _{HZ}				9	14		$C_L = 5pF$
tLZ	$OE to T_0 - T_1$	7		11	17		$R_{L} = 667\Omega$
t _{ZH}				15	22		
tzL	$OE to t_0 - t_0$		16	24		0 - 45-5	
t _{zL} OE to t ₀ - t ₇ t _s Set-up Time, Clear Recovery to CP		20			ns	$G_L = 45 pr$ $R_L = 667 \Omega$	
	Pulse Width	Clock	15				-
tpw	Fuise Width	Clear	15			115	

SWITCHING CHARACTERISTICS OVER OPERATING RANGE*

01211011			CC	DM'L	N.]	
			$T_{A} = 0^{\circ}C$ $V_{CC} = 5$	to +70°C 5.0V ±5%	$T_{A} = -55^{\circ}$ $V_{CC} = 5$	C to +125°C 5.0V ±10%		
Parameters	De	escription	Min.	Max.	Min.	Max.	Units	Test Conditions
t _{PLH}				29		31		
t _{PHL}	G1 10 10 - 17			39		42	115	
t _{PLH}				34		37		
t _{PHL}	G ₂ 10 T ₀ - T ₇			44		48	115	
t _{PLH}				40		42		
t _{PHL}	$CF 10 T_0 - T_7$			51		55	115	$C_L = 45 pF$
t _{PLH}				47		54		$R_L = 667\Omega$
tPHL	$CLH to T_0 - T$	7		58		66	ns	
ts			27		30			
t _h	CE to CP		0		0			
ts			17		20			
t _h	A, B, C, POL II		0		0			
t _{HZ}	\overline{OE} to $Y_0 - Y_7$			17		18		$C_1 = 5.0 pF$
t _{LZ}				27		34	ns	$R_L = 667\Omega$
t _{ZH}				25		27		
t _{ZL}	$OE 10 T_0 - T_7$			28		.30	ns	
t _s	Set-up Time, C	lear Recovery to CP	23		25		ns	$C_L = 5.0 pF$ $R_L = 667 \Omega$
	Pulse Width	Clock	17		20			-
*pw		Clear	15		15		115	

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

,	Inputs								Internal Registers			Three-State Outputs									
Mode	С	В	Α	POL	CE	CLR	G*	ŌĒ	СР	OC	QB	QA	OPOL	Y ₀	Y ₁	Y2	Y3	Y4	Y5	Y ₆	¥7
	х	х	х	х	х	L	L	L	x	L	L	L	L	н	н	н	н	н	н	н	н
Jear	х	х	х	х	х	L	н	L	х	L	L	L	L	L	н	н	н	н	н	н	н
Hold	х	х	х	х	н	н	NC	L	†	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Select	L	L	L	н	L	н	н	L	1	L	L	L	н	н	L	L	L	L	L	L	L
	Ł	L	н	н	L	н	н	L	t	L L	L	н	н	L	н	L	L	L	L	L	L
	L	н	L	н	L	н	н	L	1	L	н	L	н	L	L	٠H	L	L	L	L	L
	L	н	н	н	L	н	н	L	1	L	н	н	н	L	L	L	н	L	L	L	L
	н	L	L	н	L	н	н	L	t	н	L	Ł	н	L	L	L	L	н	L	L	L
	н	L	н	н	Ł	н	н	L	1	н	Ł	н	н	L	L	L	L	L	н	L	L
	н	н	L	н	L	н	н	L	1	н	н	L	н	L	L	L	L	L	L	н	L
	н	н	н	н	L	н	н	Ļ	1	н	н	н	н	L	L	L	L	L	L	L	н
	L	L	L	L	L	н	н	L	1	L	L	L	L	L	н	н	н	н	н	н	н
	L	L	н	Ł	L	н	н	L	1	L	L	н	L ·	н	L	н	н	н	н	н	н
	L	н	L	L	L	н	н	L	1	L	н	L	L	н	н	L	н	H	н	н	н
	L	н	н	L	L	н	н	L	1	L	н	н	L	н	н	н	L	н	н	н	н
	н	L	L	L	L	н	н	L	1	н	L	L	L	н	н	н	н	L	н	н	н
	н	L	н	L	L	н	н	L	1	н	L	н	L	н	н	н	н	н	L	н	H
	н	н	L	L	L	н	н	L	1	н	н	L	L	н	н	н	н	н	н	L	н
	н	н	н	L	Ľ	н	н	L	1	н	н	н	L	н	н	н	н	н	н	н	L
	х	х	х	н	L	н	L	L	1	×	х	х	н	L	L	L	L	L	L	L	L
	х	х	х	L	L	н	L	L	1	×	х	х	° Ц	н	н	н	н	н	Н	н	н
Dutput Disable	x	x	х	х	x	x	х	н	x	NC	NC	NC	NC	z	z	z	z	z	z	z	z

FUNCTION TABLE

DEFINITION OF TERMS

- CLR CLEAR - When the CLEAR input is LOW, the control register outputs (QA, QB, QC, QPOL) are set LOW regardless of any other inputs.
- CP CLOCK - Enters data into the control register on the LOW-to-HIGH transition.
- ĈĒ CLOCK ENABLE - Allows data to enter the control register when \overline{CE} is LOW. When \overline{CE} is HIGH, the Q_i outputs do not change state, regardless of data or clock input transitions.
- A,B,C Inputs to the control register which are entered on the LOW-to-HIGH clock transition if TE is LOW.
- POL Input to the control register bit used for determining the polarity of the selected output.
- Ğ₁ Active LOW part of the expression $G = G_1G_2$ or G = $(\overline{G}_1) G_2$ where G is either data input for the selected Yn or is used as an input enable.
- G_2 Active HIGH part of the expression $G = G_1G_2$.
- The three-state outputs. When active ($\overline{OE} = LOW$), Yn one of eight outputs is selected by the code stored in the control register, with the polarity of all eight determined by the bit stored in the POL flip-flop of the control register. The selected output can further be controlled by G according to the expression $Y_{SELECTED} = \overline{G} \oplus \overline{Q}_{POL}$
- OUTPUT ENABLE. When $\overline{\text{OE}}$ is HIGH the Y_n outputs OE are in the high impedance state; when \overline{OE} is LOW the Yn's are in their active state as determined by the other control logic. The OE input affects the Yn output buffers only and has no effect on the control register or any other logic.

METALLIZATION AND PAD LAYOUT

G1

L. L н н L н L L L.

н н

G G2 L

DIE SIZE 0.084" X 0.099"